TOTIC. FORM”‘F@R' THE - e ;

| QR THE COU[OM

SiéCTIGN\sF

SR "sK 'ObeVAR
| J— ‘s b N

g ‘J} R =) : /\ .5 A /#/*\ L _\)1_‘ N - K .’,"'
»/\g t\;\ < o (NASA‘TH -X- 6618“) : ASYHPTOTIC FORYM FOR

T LTy N } THE CROSS SECTION FOR THE COULONB :
;\L = -__:\_F_) INTEBBCTING REARRANGEHENT COLLISIONS s

B ; - (NASA) . 10 -p HC - CSCL 20H Unclas N

ST S 182397 /.
/‘\:‘\ ;.«, N ) : - Jn N > f/\\, )} k_ i, \\‘J" &
'.*;',"’,‘,\ o Lt \‘l\ S :’ Y- >~
& ’(n‘ ';.‘p,;u;?d‘by ' | R g
-1 NATIONAL TECHNICAL f-'-"
"<, INFORMATION SERVICE [
g U e, VA SRST R
. : a - ?7\ 5 P (i '“‘T"»;',""‘". 5 ‘-—-?ﬂ - .
L N . . . . P S L. 4 z ‘;,, s~ / ~ kel fs
- e GODDARD SPAcE FLIGHT CENTER —
; -':'?_;’f:si L AN N “\ ey
R A \;' ST GREENBELI MARYI-AND o R
\1’ ot kel N TYONLZ _} S - ‘ el



ASYMPTOTIC FORM FOR THE CROSS SECTION
FOR THE COULOMB INTERACTING

REARRANGEMENT COLLISIONS

K. Omidvar
Theoretical Studies Branch, NASA/Goddard Space

Flight Center, Greenbelt, Maryland 20771

It is shown that in a rearrangement collision lead-
ing to the formation of the highly excited hydrogenlike
states the cross section in all orders of the Born ap-
proximation behaves as 1/n2, with n the principal
quantum number, thus invalidating the Brinkman-
Kramers approximation for large n. Similarly, in high
energy inelastic electron-hydrogenlike atom collisions
the exchange cross section for sufficiently large n

dominates the direct excitation cross section.

We consider the collision of two like and one unlike charged particles 1, 2,
3 with masses m , m,, ‘m3 and charges Z e, Z,e, Z,e, respectively, where e is
the absolute value of the electronic charge. The collision is represented by

1+ (2+3)~(1+3)+2where (2 + 3) and (1 + 3) represent the hydrogenlike



states of 2 and 3, and 1 and 3, respectively., We assume that (2 + 3) is in the
ground state, but (1 + 3) is in an arbitrary state including the continuum. Ex-
amples would be capture of an electron by a proton incident on atomic hydrogen,
and the exchange effect in scattering of electrons by atomic hydrogen.

The collision amplitude in the M*'"* order of the Born approximation is

given by1
T, M1 = <exp (ik, "r,) ¥(f, r) [V (G, V)" lexp(ik, " r)¥(i, xr, )> 1)

where the subscript f on the left hand side designates that the post interaction
form has been used for the amplitude. ¥ (i, r ,; ) and ¥ (f, r,; ) are the bound
states of (2 + 3) and (1 + 3) wherer,, and r,, are vectors connecting par-
ticles 2 and 1 respectively to particle 3. The vectors r, andr, connect the
centers of masses of (2 + 3) and (1 + 3) to the particles 1 and 2, and vectors k,
and k, are the propagation vectors of particles 1 and 2 with respect to the

centers of masses of (2 + 3) and (1 + 3), respectively. 1k2| is related to | k , |

through

29,2 21,2
Tk, h%ky mi(mj+mk)
+E(2,3) -E(1,3). p, = ————
2p., 2p, ! M, M +my

(2)

where E(2, 3) and E(1, 3) are the energies of (2 + 3) and (1 + 3) states. Finally,

V.=V, +V,;,andV, =V, +V ., where V,, is the potential between i and



j particles, and G_ is the three body Green's function for outgoing waves. It
should be noted that V_ , is repulsive, while V., and V. are attractive poten-
tials. The rearrangement cross section is related to the rearrangement ampli-

tude through the relationship

k N
o= 212 <__2> lel2d(k1 “ k) @)

27h*4 1

We first consider the first Born approximation which corresponds to M = 0
in (1). The cross section when only V,; is taken into account,commonly called
the Brinkman-Kramers cross section, was originally calculated by Brinkman
and Kramers2 taking the ground state as the final state. Célculations for the
excited states as the final states have been carried out by May : and Omidvar4.
These calculations indicate that at high relative incident energies the cross
section behaves as n~> with n the principal quantum number of the final excited
state. This behavior has also been predicted by Oppenheimers.

We shall consider here the part of the amplitude coming from the V;, po-

tential that can be written &

« . d
T(D (Vy,) = 4nZ,Z,e? fU (f,C-p) UG, B-p) _%,
P

(4)



where

UG, q) = (2m 2 Jexp (iq - r) ¥ (j, r)dr (5)

In this article this amplitude is evaluated for large n and it is shown that the
asymptotic form of the cross section with respect to n is dominated by this

amplitude.

When the bound states are expressed in parabolic coordinates we haVe4

S(m,0) VA (a/2)5/? (“’_*)2“1

w

U(nn,m, q) =
‘ m PE

1 s - (6)
a :p,_ljZiZj/(menao), ws=Z (e -iq), z = q,

with n{ and m the Stark and the absolute value of the magnetic quantum numbers,

m _ the electronic mass, and a_ the Bohr radius. In (6) the spacial quantization

axis is taken along q.

Taking the ground state as the initial state and designating the final state by

n n, m, through (6) Eq. (4) can be written

-1
Tnnlm(l) (V12) = S(m,O) 327 le2e2 (aoa)5/2 /;g ,

ag = HoZyZy/(m ay), @ = py3Z,Z3/ (m,nay), (7



2n
g:f dp a-ilC-pl b (8)
p2la 2+ B-p)22 2+ (C-p)H?2 \a+i |C-p

For n, = 0 and n ~ ® the integration in (8) can be affected by a delta function

integration. This leads to

§(m,0) 327Z,Z,e? Vn 0 3/2 a¥/2
Tnom( b (v12) = a0 (9)
2 [a02 +(B-0)2%]7

For n, # 0 this method of integration is not applicable.
For evaluation of § for arbitrary n, we introduce in Eq. (8) 4 = C- p and

make use of the Feynman's parametric integration method 7. Then 9 can be written

N 1
§ - - 9, = 4n dx (§, +i§,), (10)
a(a02) 0
§ - _}_ J+m (a - iq)2(n1-—1) qqu ’ (11)
22 Lo (a4 iq) 21D (g2 4 A)? - 4Q%?

(. foo sin (4n,®) q2dq | ¢ = tan~! @/ (12a)
o (a%sq?)? (q? + )% - 4Q2¢?

0

2ny-1 ®
4 2v4+3
gs - _ ( nl > (_)V a4nl-1—2V J q dq , (12b)
» z : 2v + 1 (a2 4q2)2(n1+1) [q2+A)2-4Q2q2]



A=lal+(B-C)N x+C?(1-x),Q=-Bx+C 3)

§, can be evaluated by a contour integration. The evaluation of §, for
n,;=0and @~ 0 gives §,~ -7/(4a0?), Substitution of this result in (10) leads
to a result identical to (9). Forn,# 0 and a~ 0, § , does not show any pole with
respect to a, and remair? finite asn - @,

To evaluate § ; We use the form (12b). By an ordinary integration we find

that
2n1-1 vl
q Cny B Z 4n, (-)K v+ 1 @~ 0 (14)
3T gan2 M 2v+1 20, 1=K\ n )
a v=0 A=0

Substitution of this result in (10) gives

8(m,0)327 leze2 vn a05/2 o372 2i cnl

Tnnlm (Vip) = , n,=1,2,3, a0 (15)

C? [a,2+(B-C)2]2 g
By substituting from (9) and (15) into (3), neglecting contribution due to the
V,, potential, and summing the right hand side of (3) with respect to n, and m,

we find an expression for the total cross section for capture into an excited state

n. This is given by

n-1
g Mo
o(n) _ 5912 (2,2,)? a5 na’ |1 +_4_ E Cii\
a2 m 2 2 1

e

K f d(k, - ky)

2
"k JCT a2+ B-O2°

» A - (16)



Asn .o, . approaches zero. This can be shown if § ; is expressed through

(12a) in its asymptotic form with respect to n,:

g - J"” q2 8(¢) do

S o (a2 +ad® [(q? +8)? - 4Q%q?]

a

Comparison of (14) and (17) shows thatc _ —~ 0Oasn; - o. Using the explicit

1

form of c,, as given by (14) it is found that

[oo]

E c? _0.616
1

nl:l

(Cf. Eq. (16)).
The integrals § ) and { ; can also be evaluated analytically for arbitrary n,

providing an?e'esy method hitherte-net-given-in-the-titerature for evaluation of
the capture cross sections for the arbitrary excited states.” We thus conclude
and high impact emergies
from (16) that due to the repulsive potential the cross section at large I}\ behaves
as 1/n2. This has two implications: (1) The cross section according to the
Brinkman-Kramers approximation, commonly assumed va.lid for high principal
quantum numbers, is not valid. For the low lying levels this approximation gives
too large a cross section. In the case of the symmetric charge exchange between
protpns and atomic hydrogens Jackson and Schiff ® have shown that inclusion of
the V. , potential reducés the BK cross sectional values in the energy range of
interest by almost an order of magnitude, bringing them closer to the experi-

mental results. Their assumption concerning the n dependence of the cross

section for the excited state is not however correct, and their calculated cross



sections should be renormalized before they can be compared with the measure-
ments. Similarly, the assumption made by Bates and Dalgarno8 that the ratio

o (nd)/o (1s) is the same for both the Born and the BK approximations is in-
correct. nf and 1s designate here the final excited or the ground states. (2) In
high energy inelastic scattering of electrons by hydrogenlike atoms the exchange
cross section behaving as 1/n2 dominates the direct cross section which behaves
as1 /n3, a result of significance in plasma and astrophysical calculations.

Considering the second Born approximation, from (1) we find that

T _ 2 quqq' (2,2,U" (nnym, A)+Z, Z,U" (nn m, D)] [Z,Z,U(100, E)+Z, Z,U( 100, F)]
v

nn,m
1

T\zkg h2q2 -h2ql2 K )2(]( M3 )
+E(1,3) - - (k, -q + — D)
2u, 2p, 24,4 2 1 m, 1+
, M ; #13
A=-q' +—2 (k,-q), D=-q' - 2 (k,-®)
3 1
a3 v
E-_2 «k L F=-_2 LR T
m, 14 m, 1 7t i q-4

(18)
where 100 and n n, m designate the initial and final states. Comparison of (18)
with (4) shows that T_ . (2) has similar n dependence as T, | 1;”. Therefore the
cross section due to the second Born approximation at high n behaves similarly
as 1/n?

Regarding the higher orders in the Born series it is seen from (1) that the

dependence of these orders on the final state is through the first squared

bracket in the numerator of the integrand in (18). Then, provided the higher



order amplitudes have well defined values, their dependence on n for large n is

the same as for the second order amplitude.

I am indebted to Dr. A. Temkin and Dr. T. G. Northrop for their critical

and constructive comments.
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